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The axisymmetric problem of an intense point-source explosion [I] at the boundary of 
a half-space filled with a weightless perfect gas with the adiabatic exponent Y is con- 
sidered. At the initial instant t = 9 a finite energy & is released at a certain point of 
this boundary, i.e. a point source explosion occurs. This problem could be of interest in 
connection with the investigation of motion resulting from a strong shock at the medium 

surface when the kinetic energy of the body is sufficiently great. This problem was con- 

sidered by a number of authors. Papers p-41 dealt with this subject from the point of 
view of its application to the problem of crater formation when a body moving at a high 
space velocity hits the flat surface of another body. It was assumed there that the shock 
wave propagates in the same way as in the case of explosion in a boundless medium, 
In [53 the medium is considered to be an incompressible fluid, and that the momentum 
of the substance affected by the motion is time-independent and equal to the striking 
body momentum. In [663 certain approximate characteristics are obtained by means of 
co~uuction of an exact particular solution of differential equations defining the flow. 

An approximate analysis of energy distribution between two media resulting from a point 
source explosion at their interface is given in n and 83. In [9] a numerical solution of 

the problem of explosion on the surface of a copper plate obtained by using elasto-plas- 
tic models for the copper plate and a perfect fluid. Results of experiments with point 

source explosions at the surface of water are given in papers [lo and 111. In paper [123 

this problem is solved in a linearized formulation. The solution was derived in the form 

of Fourier series expansion in variable 9 , the angle with the axis of symmetry, with coef- 
ficients dependent on a self-similar space-tem- 
poral variable. The known solution of Sedov of 

the problem of an intense point source explosion 
[l] was used for the zero terms of the expansion. 

Considerable space is devoted in paper 1121 to 
the analysis of shock wave interaction with the 

free surface at the intersection point of these. 
Significant inaccuracies were, however, intro- 

Fig. 1 
duced which led to qualitative and quantitative 
distortions of the flow pattern as a whole. These 

inaccuracies have been eliminated in this paper. 
In the problem here considered we may take T, 6, t, E,, pl, y as the controlling para- 

meters, where p1 is the medium initial density, 
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In these variables the basic equations are of the form 

where t? and V are the dimensionless values of the radial and transversal velocity cam- 

ponents ti and V, and R and P the dimensionless values of density p and pressure p ~ 
respectively, 

boundary conditions at the shock wave surface 

IT 
r2(t, 0) = x 

( ) 

“l l’s I,? (0) 
(2) 

are of the form 2 
u2=qpp, 

T+l 
u,==~D,, P2~7-3319 F+-JPZB~ (3) 

,=.-ji +(+ ~~I-?~+~ ;(~q-K;+c*sp (4) 

Here D is the shock wave normal velocity, D, and L)s the ComponentS of this velocity 
in the directions of r and 8 . Angle p is defined on Fig. 1, subscript 2 denotes magni- 

tudes at the shock front, and a prime denotes here and in the following differentiation 

with respect to il. 
From the relation D = rail’ I .t we ontain for the shock wave dimensionless velocity 

the expression : D*Z % cm P 

In particular when 8 I= a&n , angle fl is equal to angle 6 between the shock wave and 

the normal to the undisturbed free surface. An incorrect expression was used in 1121 for 
the dimensionless normal velociry of the shock wave for 6 = l/s IC. 

The conditions of the shock wave may be written in the folIowing dimensionless form: 

At the disturbed free surface 

pressure is equal zero, and the particle velocity projections on the normal to the surface 
coincides with the normal velocity of the surface itself. These conditions may be writ- 

ten in the dimensionless form 
P*=O, u* (@- k +*(+=+ 131 

Subscript l relates to magnitudes at the perturbed free surface. The problem is to 
find a solution of the system of Eqs.{l) satisfying conditions (5) and (7) along the unknown 
boundaries hz = kz (e) and h, = I, (0). 

In order to solve the stated problem the motion in the neighborhood of the shock wave 
intersection point with the free surface (point B in Fig. 2), Passing as in cl.21 from 
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variables h and 0 to a system of polar coordinates s and rp with its origin at point 

(Fig. 2) by Formulas 
sr=(h2- 2?&, sin 9 + h,3”‘, (3) 

and expressing the looked for functions in the form of series expansions in s , we can 

obtain from system (1) for the limit values of the unknown functions UB (up), V, (cp) , 

RB(v) and PB (p) when I = 0 the following system of equations : 

0 - 

. 

R 
i 

IJ-$ +IWI+~+R(~+tglp$+’ (9) 

Fig. 2 dP yP dfi 
-&--J-t*=0 

Here and in the following subscript B is omitted. Point & is a singular point. The 
following boundary values of functions, U, V, R and P when this point is approached 
along the shock wave and the free surface are defined here by 

4 4 
G? = 5 (r + 1) cos7(p2, vz=---- 

5 (T + 1) 
sin 92 cos qb (In) 

r+l 8 
Rz=g, ” = 25 (r + 1) cos’%2 

P, = 0, u, + tg ‘p*v, = 215 (11) 

Here FZ and ‘p* are the angles corresponding to the positions of the shock wave and 
the free surface at point,B respectively. The question of finding a nontrivial solution 
of the system of Eqs. (9) at point B which would depend on angle 9, and satisfy the bound- 
ary conditions may be considered. 

It is readily seen that the system (9) has two algebraic integrals 

P - KRY (K = const) (12) 

yPJR= [(U- a&) cos cp + v sin rpl2 (13) 

Integral (13) is the condition of nontrivial solvability of the system of Eqs. (9) with 
respect to derivatives. 

With the use of (12). instead of (9) and (13) we can write the following system: 
dU 

F=&cosq[(u--$sinCp--Vcosq 1 dU ,+wP~ ($4) 

R (cp) = j 
[(U - 2/6) cos g, + V sin qplz 1 J (1-r) 

YK 
(15) 

A qualitative analysis of me flow in the vicinity of point B is given in detail in (121. 
The point at which a rarefaction wave passes through the free surface is the point of 
origin of a rarefaction wave in which the pressure falls from its value at the shock 
front down to zero. A flow similar to the Prandtl-Mayer flow develops. The shock wave 
skims along the free surface at a velocity equal to D I CDS 8 in which 6 is the angle 
between the tangent to the shock wave at point B and the normal to the undisturbed 
free surface equal to angle @ between the normal to the shock wave and the undisturbed 
free surface, If angle 8 is sufficiently great, then the rarefaction waves cannot catch up 

with the shock front, and the envelope of the fore front of these waves will be the front 
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of waves reflected from the free sutface. This type of reflections is called “regular”. 

If however angle b is small, the rarefaction waves catch up with the shock front, and by 
interaction distort the latter. In this case the reflected wave front is indeterminate 
(“irregula;‘reflection) at point B It follows from the considerations adduced in [12] 
that in the problem here considered the reflection is of a “critical” character. The equa- 

lity of the velocity of shock wave motion along the free surface and the velocity of the 
rarefaction wave fore front is the condition of the “critical” character of reflection. The 

flow in this case, as in that of regular reflection consists of two regions, viz. the area 
between the shock wave ((p = 9%) and the rarefaction wave fore front ((0 = ‘PR)r’where 
all of the flow characteristics are constant, and the area of the rarefaction waye itself 

((Pn d ‘p < cp,) in which pressure falls down to zero. The position of these two areas is 
shown in Fig. 3. The condition for the reflection to be “critical” has been inaccurately 
written in paper [X?]. The correct expression for this condition is of the form 

yPz I Ra = (Us - a/a)2 + Vzz (16) 

where U2, V2, I& and Pz are defined by relations (10). This condition may actually be 
obtained from the geometric construction shown in Fig. 4, where two consecutive posi- 
tions of point B and of the fronts of the shock and rarefaction waves corresponding to 

Fig. 3 Fig. 4 

instants t and t -1 At are represented. The rarefaction wave front propagation may be 
represented schematically as propagation at the local velocity of sound uz along a normal 

to itself, followed by the transfer at velocity of particles behind the shock wave v,, in the 

direction of that velocity.In Fig. 4 this is represented by segments BA and AB’ respectively. 

For the reflection to be critical the distances covered by the shock wave and the rarefac- 

tion wave front along the free surface must be equal to the time interval At. During the 

time interval At the shock wave would have travelled along the free surface a distance 
equal to DAt / cos 8. For triangle BAB’ we obtain the relation 

azZ = (D set 6)? + uz2 $ Q2 - 2 D set 6 ~Z~TVT cos 6 (17) 

Here l/us2 -I- V? = 1 v, 1 is the absolute value of particle velocity behind the shock 
wave. Obviously v u22 + v22 cos 6 = u2 

Passing to dimensionless variables we obtain condition (16). The same condition may 
be derived from the algebraic integral (13). For ‘p = qn we .have 

YPZ / Ra = [( UZ - ‘/6) coa ‘Pn + v2.h (PR]’ 

Solving this equation for cp~we obtain 

(pR = _ arcsin lwno72 + Wz - %) I/W2 - 2/# + V22 - TPZ / Rz 

(U, --- 2/g + C’22 
(18) 

It will be seen from (18) that the transition from regular reflection to an irregular one 
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is determined by condition (16) from which follows 

(Pzc = - arc cos 6% (r + 1) / 7 

Here qasis the angle corresponding to the shock wave position at point:B for a critical 

reflection. 
Numerical integration of the system of Eqs.(14) with boundary conditions (10) and(ll), 

and also with the condition of the solution continuity at the boundary cp= (Pn was car- 

ried out with 0 = 7. The supplementary condition (16) was necessary because in this 
case the two conditions (11) coincide identically, as is seen from (ll), (12) and (15). 

Computation resulls are pesented in Table 1. 

cp = (pR = 9"22' 0.05713 
19"38 0.05549 
31”44 0.05057 
41”16’ 0.04506 
52”16 0.03787 
64”OO’ 0.03052 
74’16’ 9.02548 
83”48’ 0.02272 
96”16’ 9.02276 

106”32’ 0.02625 
cp = ‘P* = 112”24’ 0.02966 

u 

- 

- 
V R 

-0.04949 1 1.3333 
- 0.04995 1.3268 
- 0.05239 1.3050 
- 0.05651 1.2767 
- 0.06422 1.2308 
- 0.07612 1.1639 
- 0.08943 1.0869 
- 0.10373 0.9948 
- 0.12422 0.8258 
- 0.14151 0.5853 
- 0.15115 0.2120 

Table 1 

P 
I I 

u* V* 

0.02285 
0.02207 
0.01966 
0.01686 
0.01305 
0.00883 
0.00547 
0.00294 
0.00080 
0.00007 
0.00000 

I 0.05713 
0.05549 
0.05054 
0.04497 

IO.53768 
0.03018 
0.02500 
0.02216 
0.02220 
0.02584 
0.02944 

-0.04949 
- 0.05066 

z ;*;;;;; 
- 0:06624 
- 0.07890 
- 0.09294 
- 0.10804 
- 0.12973 
- 0.14812 
-0.15838 

The position of the boundary q = ‘p+ is of fundamental significance. Contrary to[12] 

this boundary lies above the level of the undisturbed free surface. Theoretical and exper- 
imental investigations show (see, e. g. [9- 121) that when an explosion occurs at the half- 

space boundary, the flow cannot be confined to one side only of the undisturbed free sur- 
face. In the context of the formulation used here this can also be proved by the analysis 

of relations (lo)-(14). The representation of the free surface form proposed in [12] can.- 
not be used directly, if the proper position of the free surface is taken into consideration. 

The disposition of boundaries qs! (PR and ‘p* occurring in a shock wave critical reflection 
from the free surface is shown in Fig. 3. 

Solution of the system of Eqs. (14) mav be presented in the form of expansions as fol- 
lows : 

(19) 

Substituting these expansions into Eqs. (14) and into the boundary conditions we obtain 

for (p=(pR dUo/dq=d170/dq=0, u0 ((PR) = v. ((PR) = o 
dC’l/ dq = - 2/S sin 2~, u1 ((PR) = ‘15 cd (p2 
dT‘r/d~=~-4/~ainscp, Vl ((Pn ) = % sin 2% 

dU,, / dq = U,_, sin 2~ - 2V,,_r co&p, U,, ((Pi) = 0 (20) 

dV, / dcp = 2U,1 sin2 tp - V,, sin 2~, 
(Tea, 3....) 

V ~ (cpR) = 0 

Very rough estimates show that U,and V,,increase with increasing angle cy at a rate 
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not exceeding q.? , hence series (19) will be uniformly convergent, at least for ( cp 1 < 
< ‘p’ < y + I, where cp’ > 0 is any given value of angle 6 smaller than y + i. Equa- 

tions (19) defme in this region the continuous differentiable solution of the system of 

Eqs. (14). 
From (20) the following expressions of coefficients of the first three expansion terms 

may be derived u, = v, = 0 
& = “/’ COS %f + &I, c,, = '& Cd Tpd - 'f$c~Z~R 

VI = V6 sin Za, - %I5 cF + Cr2, C,, = a/bsin 2% - “Ia sin QR + %1p~ 

u‘d = f(q) + '%I. &I== -f ('$'R); VZ = g (9) + +v c'&= - g (ft-‘R) (21) 

f (cp) = - ll~Cl, sin 2cp - l/2 (C,r - 2/5) ~0s 2q, + ‘p (1/6 sin 2~ - Cr,) + r/s ‘p” 
g ((p) = %Czl sin 29 + ‘Is; Cr, cos 2q - rp (r/g CO9 29 + Ca - r/s) 

Values of U (rp) and Y (cp) denoted by asterisks obtained for the same values of angle 
9 are given in Table 1. Although coefficients (21) of the first three terms only of expan- 

sions (19) were used in computations, the deviation from exact values does not exceed 5%. 
The value of cp,calculated with the use of the first two terms only of expansions (19) 

is VP, = ii3°29’,while with the third term taken into account it was ‘p, = 113’26’. 
In conclusion the author wishes to express his gratitude to V. P. Karlikov for his assist- 

ance and support, and also to Iu. 0. Pazoiski for the help in programing calculations for 
the computer. 
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